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The entropy of the d-dimensional generalization of the BKW solution of the 
homogeneous Boltzmann equation is calculated and expressed for d = 3 in terms 
of error functions. It is verified that the McKean conjecture cannot hold in most 
of the time domain where the d-dimensional BKW solution is defined. 
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1. I N T R O D U C T I O N  

A few years  ago, Bobylev (~) and  Krook  and W u  (2) found an exact  analyti-  
cal solution (the B K W  solution) of the full nonl inear  Bol tzmann  equat ion 
for the case where the in termolecular  differential cross section is inversely 
propor t iona l  to the molecular  relative velocity. As discussed by  Ernst, (3) the 
B K W  solution has caused an enormous  revival of interest in the field of the 
kinetic theory of gases, because it describes the m a n n e r  in which a dilute 
gas of Maxwell  molecules approaches  equil ibrium. 

More  recently, Ernst  (4) and  Ziff  (5) ob ta ined  a d-dimensional  general-  
ization of the B K W  solution given by  

f ( v ,  t) = A e x p ( -  B v 2 / 2 ) ( C  + Dv2/2)  (1) 

where A =l/(27r/32K) e, B = l / x f l  e, C = [ K + ( x - - l ) p ] / x ,  D = ( 1 - x ) /  
/32x 2, x = 1 - e - ' ,  /9 2 =  k T / m ,  and p = d / 2 .  The  t ime t has been scaled 
by a constant  which depends  upon  the angular  dependence  of the differen- 
tial scattering cross section. The  requi rement  that  f ( v ,  t) be positive implies 
that  t >/ ln[(d + 2)/2] .  
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According to Boltzmann's H-theorem, the approach to equilibrium for 
any solution of the Boltzmann equation is accompanied by a monotonic 
increase in the value of the Boltzmann dimensionless entropy 

s ( t )  = - . ( 0  = - f t)ln f(v, t) dv (2) 

Therefore Boltzmann's H-theorem states that dS/dt >1 O, the equality hold- 
ing at equilibrium. McKean (6) and Harris (7) have conjectured that S(t) is a 
completely monotonic and therefore uniquely defined function, and all of 
its derivatives alternate in sign 

( -  1)"d'S/dt" < 0 for all n (3) 

and approach their zero equilibrium value with no change in sign. 
A few years ago, the validity of the alternating derivative property (the 

McKean conjecture) was shown to hold for any solution of the linearized 
Boltzmann equation, (8-1~ which is valid close to equilibrium, but does not 
hold for a solution of the Bhatnager-Gross-Krook (BGK) equation for 
Maxwell molecules. (11) 

Because, until recently, no general proof of (3) or counterexample had 
been found for a spatially homogeneous solution of the Boltzmann equa- 
tion, the investigation of whether the McKean conjecture would hold for 
the BKW solution was undertaken. Rouse and Simons (12) showed that for 
d = 3, the second time derivative of the Boltzmann entropy of the BKW 
solution remains negative during the passage to equilibrium. The integrals 
involved in the calculation of dES~dr: were computed numerically but no 
direct calculation of S(t) or dS/dt appeared in their paper. 

More recently, Ziff et al. (13) noticed that the integrals contained in the 
explicit expression of the Boltzmann entropy of the d-dimensional BKW 
solution could not be evaluated in a closed form. They were, however, able 
to express dS/dt as a hypergeometric function; the same result was 
obtained by Garret. (14) Ziff et al. computed numerically higher derivatives 
of S(t) showing that (3) holds for n up to 30 and 1 < d < 6. 

By using a theorem on the properties of completely monotonic func- 
tions, Lieb (is) recently showed that the McKean conjecture cannot hold for 
the d-dimensional generalization of the BKW solution. The result was 
confirmed by Olaussen, (la) who, by an asymptotic analysis, showed for 
d - -  3 that (3) breaks down for n = 102 and for t = 15. 

In this paper, we start from the d-dimensional BKW solution and 
define from it a function of a parameter ), whose X derivative evaluated at 
), = 0 equals the Boltzmann entropy. This trick is also used in the replica 
method. (17'is) We calculate the parametric function in Section 2. In Section 
3, we show how the entropy of the three-dimensional BKW solution can be 
derived in a closed form by using error functions. In Section 4, we calculate 
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the time derivative of the d-dimensional BKW entropy from the parametric 
function and show that it is identical to the one calculated by Ziff et al. (I3) 
and Garret.(14) In Section 5, we derive an expression for the BKW entropy 
valid for most of the domain where the d-dimensional BKW solution is 
defined, and check that for t > ln[(d + 4)/2] and for all d, the McKean 
conjecture cannot be true. 

2. PARAMETRIC FUNCTION FOR THE d-DIMENSIONAL 
BKW DISTRIBUTION FUNCTION 

Considering a nonequilibrium distribution function f ( v ,  t), we define 
the following parametric function: 

~(X) = f [ f ( v , t ) 1  ' -~  dv (4) 

where 0 < )t < 1. The Boltzmann entropy can be easily calculated by taking 
the derivative of q)(?t) 

s ( t )  = - f f ( v ,  t)ln f ( v ,  t) dv = [ 0q)(?t)/0)t ]x=0 (5) 

When f ( v ,  t) is the d-dimensional generalization of the BKW solution, the 
corresponding parametric function 4'(X) can be written as 

�9 (h) = (2~r)P/I'(p)A ' - X f o ~ U e - ' ( C  + Du) l -Xe - 8( , -x) ,  .4;i 

where u = v2/2 and 2~rP/F(p) is the surface area of a d-dimensional unit 
sphere. By performing the change of variable z = B(l -? t )u  and writing 
X = B C / D ,  the integral becomes a simple confluent hypergeometric func- 
tion and the parametric function is represented by 

a;,(Yt) = C X P ( A C ) - x U { p ,  p + 2 - )t,X(1 - X)} (6) 

. THE ENTROPY OF THE BKW SOLUTION 

Using the definition of the confluent hypergeometric function in terms 
of F functions 

U(a, b, z) - 7r 1 
sin(,~a) r ( a ) r (1  + a - a) 

I ' (k  + a)z  k 

x k=0 ~ r ( k  + b ) r ( k  + 1) - 

F(1 + a -  b + k ) z  k+l -b  ] 

r (2  - b + k ) r ( k  + 1) J 
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It is easy to derive the following expansion for the confluent hypergeomet- 
ric function contained in (6) when p takes on half-integer values: 

U { p , p + 2 - X , X ( 1  -•)} 

= U(p,p + 2,X) + ( -  1)P+ ~/29r~, 

• f M(?, p + 2,x)  _ ~ x~+'-~ 
[ r ( ?  + 2) k=0 (k + l ) (k + 2 ) r ( e ) r ( k  - ? + 2 )  

x - ~ - ' [ l n X -  , ~ ( - ? )  - ? - 1] 
+ 

r(p)r(-p) 

X-P[ lnX + ~(1 - p )  - p + 1] / 

- I'FP-5-F--( 1 -7) + O(x23 (7) 
) 

When p takes on integer values, it is still possible to expand U { p, p + 2 - 
k, X(1 - X)) as a function of ~, although the expansion is more complicated 
and is not of much interest for this paper. 

We now intend to find an explicit expression for the BKW entropy 
when p = 3/2. By using (6) and (7), it is possible to derive the following 
expansion: 

,E~176 x k _ l / 2 ] 2 ~/~ CX3/2 
K=v= ( k +  1 ) ( k + 2 ) r ( k +  1/2) 

- ~ ) + y + 2 1 n 2 - ~  + O 0  t2) (8) 

where M(3/2,7/2,X) is a hypergeometric Kummer function. By then 
using three of its properties contained in standard tables, (19) it can be 
transformed into 

M(3/2,V/2,X)  

= (5/2X)[(9/Z)M'(1/2 ,3/2 ,X)  - (3/2)M(1/2,3/2,X)]  (9) 

On the other hand, it is easy to show that 

M(1/2,3/2,X)=(1/2)[(w/X)I/2]eXI[W(~/-X)] (10) 

where I[W(,/-X-)] represents the imaginary part of the complex error func- 
tion W((-X-). (jg) By taking the derivative of (10) and then using (9) and 
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(10), we get 

M(3/2,  7 /2 ,X)  = (15/8)X -3/2eX 

We now transform the series in (8) into a closed form; for that 
purpose, let us look at the following series: 

x k + 2  

(k + 1)(k + 2)r(k  + 1/2) k = 0  

The first series in (12) can be written 

1 ~ X k+2 

2 ~=o (k + 1)F(k + 3/2)  

3 ~ X k+2 
+ 2 ~=0 (k + 2)r(k + 3/2) 

(12) 

oo x k  + l 

x~=02 (k + 1)r(k + 3/2) =f(X) 

By differentiating both sides of the last equation, we find a first-order 
differential equation that can be easily solved by using error functions. We 
get 

f(X)=f-~XI[W(fX)J(eXerf(-X-fX)+ Xe x (13) 

The second series in (12) can be transformed and expressed in terms of 
f(x):  

x k + 2  
(k + 2 ~ - ~ +  3/2) = ~-eXerf fX �89 X (14) 

k = 0  X 

Putting the results (13) and (14) back into (12), rearranging terms, and 
using (8), we find the Boltzmann entropy of the BKW solution: 

S(t) = y + 2 1 n 2 -  3/2  + ln(X/AC) + (2C/X)[1 + (3/2)X 1 

[ + 1 
+eX(~/-~C[I+3/2X-(3v~)erff-X]+3C/2fX} (15) 

4. THE TIME DERIVATIVE OF THE d-DIMENSIONAL 
BKW ENTROPY 

The interest of Eq. (15) is in showing that the entropy of the BKW 
solution can be expressed in closed form, which was thought to be impossi- 
ble by Rouse and Simons (t2) and Ziff eta/. (13) because of the logarithmic 
integrals in (2). 
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Starting now from the parametric function (6) for the d-dimensional 
BKW distribution, which can be more easily handled and which is more 
general than (15), we intend to find the time derivative of the entropy; from 
(6), it is straightforward to derive 

S(t) = (0~(X)/0X}x=o 

= - l n A C  + p ( 1  + D / B )  - CXe {(~/OX)U(p,p + 2 -  X,X))a= 0 

(16) 

Now, replacing A, B, C, D as functions of t, taking the time derivative of 
S(t) and transforming the confluent hypergeometric function by using 
some of its properties (19) we find after rearranging terms 

d S / d t = f - p / ( e ' - 1 )  2 ] +[e t / ( e  t -  1)2Ix e 

• ( ( a / 0 x ) [  u ( e  + 1, e + 2 - x , x )  - p u ( e ,  e + 1 - x , x ) ]  } ~ 0  

If we integrate the integral form of U(p + 1, p + 2 -  X,X) by parts, 
the X derivatives cancel out and the time derivative of the entropy takes the 
form 

et ( ~  uPe-U du 
dS _ - ~  + Jo ( u + X ~  
dt (e t -  1) 2 I ' ( p ) ( e ' -  1) 2 

which can be rearranged by again integrating by parts, and lead us to the 
result 

d S _  1 fo ~ ue+le -~ dt V(p)(e' - 1) 2 (u + X)  2 du (17) 

in accordance with the results of Garret (14) and Ziff et al. (13) 

. d-DIMENSIONAL BKW ENTROPY AND MCKEAN CONJECTURE 

From the definition of the confluent hypergeometric function 

U(a,b,z) - r(a)Z-" Jo(~176 -[- ~ )b-a-1 e - 'ds  

it is possible to show that in the following expansion 

N (a -- b + 1)~ 1 
V ( a , b , z )  = z-" ~ ( -  1)"(o). , zo 

n = O  n .  

(18) 
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where 

(a) ,  = a(a + 1)(a + 2 ) . . .  (a + n - 1) 

( a - b +  1 ) , - - ( a - b +  1 ) ( a - b + 2 ) . - . ( a - b + n )  

and 

(s,  z )  = 
( b - a -  1 ) ( b - a - 2 ) . . . ( b - a - N ) (  S ) b - a - '  

N!  l + z  

X foS/Zrm(1 + r)a-bdr 

the integral contained in (18) is of the order of 1 /z  N +1 and converges when 
[z[ > 1, for real z, and when N + a - 1 > 0. (2o) Therefore, forp  ~ 0 and for 
X > 1 {t > ln[(d + 4)/2]),  we can expand U(p, p + 2 - ~,X(1 - ~t)) in the 
following series: 

U { p , p  + 2 - ) ~ , X ( 1  - ~)) 

p ( p  + 1)(p + 2 ) . . .  (p  + k -  l) 
X 

g=o ~ k!  

[1 + 1 / ( ~ -  I ) J [ I + 2 / ( X - 1 ) ] . . .  [1 + ( k -  1 ) / ( X - 1 ) l  
X 

X k 
(19) 

By inserting (19) into (6), expanding r in terms of ~, we get an 
expression for the BKW entropy valid for allp and for all t > ln[(d + 4)/2] 

s ( t ) =  

= p -  lnA 0 + (p  + 1)ln(1 - e - t ) -  ln[1 - (p  + 1 ) e - t  l 

§ t X-- ~ ~ 1 7 6  1) k+l  ak 
1 ( -  x 

(20)  

where d o =  1/(2~rfi2) p and a k =  p ( p  + 1 ) ( p + 2 ) .  �9 �9 (p  + k -  1 ) / k  
( k  - 1). 

It is easy to verify that Seq = p  - lnA 0 represents the equilibrium value 
of a d-dimensional generalization of a Maxwell Boltzmann distribution, 
because, from (20), it is obvious that 

lira I S ( t ) -  Seq] = 0  

If we now expand (20) in powers of e - t  and separate the even from the 
odd terms in the series contained in (20), we can write the nth derivative in 
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respect to time of the d-dimensional BKW entropy as 

d~S _ - 2 q t  b2q(2q)" ( -  1) ~ dt ~ a2qe + b2q+l(2q + 1)he - '  + ~,  Cm(2q)e -~ '  
q=l  rn=0 

X ((m + 2q + 1)"(m + 2 q ) a ( q ) e - '  - (m + 2q) n 

+ ~ pe-(m'+l) ,[(m + m'  + 2q + I) ~ 
/71'=0 

- ( m  + m' + 2q + 2)" 

(21) 
where b2q = [(p + 1)/2q][(p + 1) 2q- t _ 1), Cm(2q) = (p  + 1)m(2q)(2q + 
1)" " " (2q + m -- 1 ) / m !  and a(q) = (p  + 2q)(2q - l)/[(2q)(2q + 1)]. 

We can think of two simultaneous conditions that, if obeyed, would 
lead to a violation of the McKean  conjecture: 

t - ln[ r ~ ( q ) l  [ t  - l n ( r ~ ( q ) )  3 
< n < (22) In[(Y+ I)/Y] In[(Y+ 2)/(Y+ I)] 

where Y = m + 2q; the couple of conditions in (22) would, then, make the 
sums over m and m'  in (21) both positive. Considering that a ( q ) ~  1 when q 
increases, we immediately see that the two functions of Y on both sides of n 
in (22) will admit a maximum for Y = YM, YM being a little bit less than e t 
in both cases. The two maxima being close from each other, we can expect 
that, for Y > YM1 (YMl being the maximum of the function of Y on the 
left), the first condition on the left in (22) will continue to be satisfied but 
that the second inequality will not. 

For Y > YMI, therefore, we have to find another set of conditions in 
order for the two sums over m and m'  in (21) to be positive. For that, let us 
look at the following group of terms: 

~(Y) =17 ~ e-(m'+l)t(Y-.lr - m'-[- I) n- yn 
1 m'=O 

= yn p oS(m ' , Y ) -  1 (23) 
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where 

[ n(m'+l) n(n-1)(m'+l)2 + ] S(m',Y)=e -(m'+Ot 1 + y + ... Y22 ! 
Now, let us consider the following group of terms: 

~(Y)= e~(q)Ye-tI(Y l )n--Pm'=0 ~ e-(m'+')t(Y + m' + 2)nI 

which can be written 

~(Y) > ~(q)Ye-'(Y + I)"[ 1-p ~ m'=0 (24) 

By combining (23) and (24), we have 

2(r)= 2(r)+ 2(r) 
1 2 

By approximating the series, we find 

~(Y)>[a(q)Ye-t(Y+ 1) ~ -  Y"][1-p/(e ~-"/v- 1)] (25) 

We can see that ~ ( Y )  is equal to the sum of terms in m of (21); it is easy to 
check now that the only set of conditions that would make ~ ( Y )  positive 
and that would be compatible with the first condition on the left of (22) are 

t -  In[ Yc~(q)] 
< n <  Y[t-ln(p+ 1)] (26) 

In[ (Y + 1) /Y] 

It is obvious that the second condition on the right of (26) can be satisfied 
for all Y > Yul. Therefore, if n satisfies (26) with Y = Yul, we can predict 
that the McKean conjecture will be violated for all t > ln(p + 2). 

6. C O N C L U S I O N  

This work contributes to and confirms some already known results 
concerning the BKW solution. We have been able to express the Boltz- 
mann entropy of the BKW solution in closed form in terms of error 
functions. The calculation of the entropy for integer values of/) should also 
be interesting since it includes forp  = 1, the Tjon-Wu model; (21) it will be 
done in a separate publication. The series expansion of the nth derivative in 
respect to time of the d-dimensional BKW entropy also confirms Lieb's 
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result, (Is) showing that this particular Boltzmann 
pletely monotonic function. 
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entropy is not a com- 
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